
Guide: Using PGC GitHub: orthorectification
URL: https://www.pgc.umn.edu/guides/pgc-coding-and-utilities/using-pgc-github-orthorectification/
Last Modified: December 16, 2019
Export Date: April 24, 2025

Introduction
In this guide, you will learn what software you need to run the pgc orthorectification script, where to access the
required software, and how to use the script with a sample workflow.

The PGC hosts several open source codes on GitHub, a company that hosts software development. Projects, source
codes, changes and versions can be accessed in PGC’s Repositories online.

Quick Links

Polar Geospatial Center GitHub Homepage
Polar Geospatial Center GitHub Imagery Utilities
Mac and Linux: Installation of PGC’s GDAL Stack
Windows: OSGeo4W Installation

About
Topography of the Earth’s surface and the viewing angle of a sensor can affect the distance at which features in an
image are displaced. Accurate measurements of positions and distances cannot be made unless the distortion is
corrected. The process of correcting the distortion is called orthorectification. The Polar Geospatial Center has
created a Python script that will batch orthorectify satellite imagery. In addition to orthorectification, the
pgc_ortho.py tool can correct for radiometric settings and alter the bit depth of the imagery.

Requirements
The pgc_ortho.py tool can run within a personal computing environment (desktop computer) or in a cluster
computing environment. The code is built to run primarily on a Linux HPC cluster running Maui/Torque for queue
management. This tool will also work on a windows platform.

Please note that the code is tightly coupled to the systems on which it was developed. You should have no
expectation of it running on another system without some patching.

Software:
This tool is built on the GDAL/OGR image processing API using Python. GDAL 2.1 is required for this tool to function.

If you are using a Linux system you will need to download the PGC optimized GDAL toolchain. The list of software
installed with the optimized GDAL toolchain can be found here. A script is provided to install all required packages.
If you have not ran a shell script in a Linux terminal follow this guide here. After installation of the PGC optimized
GDAL toolchain, the orthorectification tool can be ran through the Linux terminal. There are plenty of free, online
tutorials for Linux terminal if you are new to command line interfaces.

If you are using a Windows system, it is recommended that you use OSGeo4W. This will provide a Windows

https://www.pgc.umn.edu/guides/pgc-coding-and-utilities/using-pgc-github-orthorectification/
https://github.com/PolarGeospatialCenter
https://github.com/PolarGeospatialCenter/imagery_utils
https://github.com/PolarGeospatialCenter/gdal-full
https://trac.osgeo.org/osgeo4w/
https://github.com/PolarGeospatialCenter/gdal-full
https://github.com/PolarGeospatialCenter/gdal-full/tree/master/install-scripts
https://askubuntu.com/questions/38661/how-do-i-run-sh-scripts

environment to use the tool. You can get the installers here. The express installation will provide the most high
profile OSGeo4W packages. However, it will not allow for control over install location, proxies, and cache directory
selection. The advanced install will allow for more control. The PGC orthorectification tool will run with either install
type. After installation of OSGeo4W, the orthorectification tool can be ran through the OSGeo4W Shell. As with
Linux, there are numerous online resources for using a Windows command line interface.

Script Details
The pgc_ortho utility runs batch image orthorectification and conversion or submits them to a PBS or SLURM HPC
cluster for processing. Submission scripts to PBS and SLURM can be found at the PGC GitHub page. Including the
command “- -pbs” will submit the task to PBS, and including the command “- -slurm” will submit the task to
SLURM. When submitting a job to a cluster where there is storage local to the processing node it is recommended to
include the “- -wd” command. This will allow you to set a local working directory which will allow for increased
processing time.

A description of the commands can be found here. Information regarding common commands are detailed in the
sample workflow below.

Sample Workflow
Before you begin you will need to gather all your NTF files and place them in a single folder. Note for these
commands that Linux users will have forward slashes (/) in the pathname, and pathnames will begin with “/mnt/”
instead of using the drive name as in Windows (D:\).

Once you have gathered all the NTF files, you will need to open either the OSGeo4W shell, if you are1.
using Windows, or your Linux terminal if you are using Linux. Once you have opened the window, type
“python” followed by the pathname for the pgc_ortho.py script.
C:\>python user\pathname\pgc_ortho.py

This will tell the computer to use Python to run the script, which is found in the location you specified.
Dragging and dropping the pgc_ortho.py file into the terminal will automatically populate the file
pathname.

Next we will specify the output coordinate reference system. Geodetic Parameter Datasets (EPSGs) are a2.
codified list of projections and coordinate reference systems. By selecting a specific EPSG code, an
appropriate projection can be selected for the AOI the imagery lies within. It is very important to use an
appropriate coordinate system, especially when working close to the poles. For example, when using the
WGS84 geographic coordinate system, Antarctica and Greenland appear much larger than they are in
reality. By using a projection specifically designed for polar regions, this distortion can be limited, and
the imagery can be displayed more accurately. Most commonly used EPSG codes at PGC include:

3031- Antarctic Polar Stereographic
3413- Arctic Polar Stereographic
3338- Alaska Conformal Conic

To indicate the projection we can either use “-p” or “- -epsg=” followed by the EPSG number.
C:\>python user\pathname\pgc_ortho.py -p 3031
Or

https://trac.osgeo.org/osgeo4w/
https://github.com/PolarGeospatialCenter/imagery_utils
https://github.com/PolarGeospatialCenter/imagery_utils/blob/v1.5.2/doc/pgc_ortho.txt

C:\>python user\pathname\pgc_ortho.py --epsg=3031

Now we will specify the digital elevation model (DEM) to use to adjust the imagery. A DEM is a raster3.
surface that is representative of the earth’s surface. Each pixel contains an assigned value that
represents the elevation of the pixels location. The DEM is key in adjusting for errors in imagery due to
elevation as extreme changes in elevation decrease the accuracy of the imagery. A DEM is not required,
and if it is not specified, it will use an average elevation as specified from the image metadata. This is
usually effective in areas near sea level with minimal elevation change. However, the use of a DEM is
recommended. To state which DEM to use, we can use the “-d” or “- -dem=” flag followed by the
pathname to DEM file.
C:\>python user\pathname\pgc_ortho.py -p 3031 -d C:\file\pathname\DEM.tif
Or
C:\>python user\pathname\pgc_ortho.py -p 3031 --dem=C:\file\pathname\DEM.tif
The next step is to identify the output bit depth. The available bit depths are 8, 16, and 32. A larger bit4.
depth means that a larger array of possible color values for each pixel can be represented. With 16 bit
imagery, the possible number of values is 65,536, with 8 bit, it is simplified to 256. Usually, if the
imagery is being used for simple visual analysis, 8 bit will suffice, and no input is needed in the script. If
more complex analyses are being performed on the imagery, 16 bit or 32 bit float may be desired. Note
that 16 bit imagery takes up significantly more disk space than 8 bit, and 32 bit takes up even more.
While 8 bit creates a product similar to the NTF size, 16/32 bit will often create a product larger than the
original NTF, and approximately twice the size of what 8 bit imagery would produce. Available options for
this command include:

UInt16 – 16 bit output
Float32 – 32 bit floating point output
No command is required for 8 bit output.

To designate an output bit depth we can use the “-t” or “- -outtype=” flag followed by one of the
previously mentioned command options. For example:

For 8 bit output: No Command Needed
C:\>python user\pathname\pgc_ortho.py -p 3031 -d C:\file\pathname\DEM.tif

For 16 bit output:
C:\>python user\pathname\pgc_ortho.py -p 3031 -d C:\file\pathname\DEM.tif -t
UInt16

For 32 bit output:
C:\>python user\pathname\pgc_ortho.py -p 3031 -d C:\file\pathname\DEM.tif -t
Float32

As mentioned above, the pgc_ortho tool can also correct radiometric settings. Some images will appear5.
brighter or darker than others due to variation in acquisition time, atmospheric differences, and other
image differences. These differences become apparent between scenes and make visual analysis
difficult. When using 8 bit images, multiple values from the original image are aggregated into a single
value. In many images, these values tend to cluster in a specific portion of the possible spectrum of
values. A pixel stretch will stretch these values out across all 256 available values. This ensures similar
quality between different scenes. For 16 bit imagery, the maximum number of values are already used,
and usually no stretch is necessary.The three most commonly used stretches include:

No Stretch (ns): Scales the DN values to the output data type. Usually used when a 16 bit output
is desired.

Reflectance (rf): Calculates top of atmosphere reflectance and scales it to the output data type.
This option is optimized for snow-covered images.

Modified Reflectance (mr): Same as reflectance, but with a histogram stretch applied that
brightens the lower end of the dynamic range. This option is optimized for areas with less snow
cover (i.e. more diverse land covers).

To indicate the projection we can either use “-c” or “- -stretch=” followed by one of the command
options listed above. For example:

For No Stretch:
C:\>python user\pathname\pgc_ortho.py -p 3031 -d C:\file\pathname\DEM.tif -c ns

For Reflectance Stretch:
C:\>python user\pathname\pgc_ortho.py -p 3031 -d C:\file\pathname\DEM.tif -c rf

For Modified Reflectance:
C:\>python user\pathname\pgc_ortho.py -p 3031 -d C:\file\pathname\DEM.tif -c mr

Now we will specify the output file format. Different computer programs and processing steps may6.
require different file formats. Check which format you require. If no command is input the default format
is GeoTIFF. If you are using the imagery in ArcMap, ArcGIS Pro, or QGIS the default GeoTIFF setting will
be fine. Other available options include:

HFA File Format (HFA): This is a file format specific to ERDAS IMAGINE (.img format).

ENVI File Format (ENVI): This is specific to Exelis Visual Information Solution (ENVI). Binary file
with .envi extension.

GeoTIFF File Format (GTiff): This type of file is generally uniform for multiple platforms.

JPEG 2000 File Format (JP2OpenJPEG): Lossless JPEG2000 format using OpenJPEG2 driver.
JPEG2000 files are also generally accepted file types for multiple platforms.

To specify the file format we can either use “-f” or “- -format=” followed by one of the command
options listed above. For example:

For HFA:
C:\>python user\pathname\pgc_ortho.py -p 3031 -d C:\file\pathname\DEM.tif -c mr
-f HFA

For ENVI:
C:\>python user\pathname\pgc_ortho.py -p 3031 -d C:\file\pathname\DEM.tif -c mr
-f ENVI

For GeoTiff: No Command Needed
C:\>python user\pathname\pgc_ortho.py -p 3031 -d C:\file\pathname\DEM.tif -c mr

This next command is rarely needed. The Resample command denotes how cells should receive values.7.

The default option is the nearest neighbor sampling method. This method assigns the nearest
unorthorectified pixel value to the correct orthorectified pixel. This leaves the initial pixel values
unaltered, but occasional errors may lead to an inappropriate pixel assignment. Information on
resampling methods can be found here. Available command options include:

Nearest Neighbor (near): Resamples using the nearest neighbor method

Bilinear Interpolation (bilinear): Resamples using the bilinear interpolation method

Cubic Convolution (cubic): Resamples using the cubic convolution method

Cubic Spline (cubicspline): Resamples using the cubic spline method

Lanczos Resampling (lanczos): Resamples using the Lanczos resampling method

To indicate the resampling method we use “- -resample=” followed by one of the command options
listed above. For Example:

For Nearest Neighbor: No Command Needed
C:\>python user\pathname\pgc_ortho.py -p 3031 -d C:\file\pathname\DEM.tif -c mr

For Bilinear Interpolation:
C:\>python user\pathname\pgc_ortho.py -p 3031 -d C:\file\pathname\DEM.tif -c mr
--resample=bilinear

For Cubic Convolution:
C:\>python user\pathname\pgc_ortho.py -p 3031 -d C:\file\pathname\DEM.tif -c mr
--resample=cubic

Another optional command is “- -rgb”. This command removes all bands besides the red, green, and8.
blue bands. This is done to create a smaller file, and should be used if you are only looking to display the
true color image. All other bands (coastal blue, yellow, NIR, etc.) will not be kept. To specify that only the
red, green, and blue bands should be kept, use the “- -rgb” command. For Example:
C:\>python user\pathname\pgc_ortho.py -p 3031 -d C:\file\pathname\DEM.tif -c mr
--resample=cubic --rgb
The last step in setting up the pgc_ortho tool is specifying the location of the NTF files and the desired9.
output location. Type the pathname to the folder containing the NTF files followed by the pathname to
the desired output folder. You can drag and drop the folders into the terminal to have their pathname’s
appear. Lastly, make sure that the proper syntax is used (like spaces between commands). The example
below lists commands with proper syntax:
C:\>python user\pathname\pgc_ortho.py -p 3031 -d C:\file\pathname\DEM.tif -c mr
--resample=cubic --rgb D:\input\Imagery\NTF D:\output\folder\ortho

To run the tool, press the Enter key. It is important to determine the exact commands you will need
before running the tool. You will never need to use all available commands together.

Additional Resources

https://mapasyst.extension.org/remote-sensing-resampling-methods/#.U5iyjvldV8E
https://en.wikipedia.org/wiki/Lanczos_resampling

Orthorectification Explained:
https://en.wikipedia.org/wiki/Pansharpened_image

Bit Depth Explained:
https://apollomapping.com/2012/September/article8.html

Resampling Strategies:
http://www.extension.org/pages/9628/remote-sensing-resampling-methods#.U5iyjvldV8E
http://www.ldv.ei.tum.de/uploads/media/Vorlesung_3.4_Resampling.pdf
http://en.wikipedia.org/wiki/Lanczos_resampling

DEM General Overview:
http://en.wikipedia.org/wiki/Digital_elevation_model

RAMP DEM Information and Download:
http://nsidc.org/data/nsidc-0082

AlaskaNED Information:
http://ned.usgs.gov/

SRTM Information and Download:
http://www2.jpl.nasa.gov/srtm/

ERDAS IMAGINE Website:
http://www.hexagongeospatial.com/products/ERDAS-IMAGINE/details.aspx

https://en.wikipedia.org/wiki/Pansharpened_image
https://apollomapping.com/2012/September/article8.html
http://www.extension.org/pages/9628/remote-sensing-resampling-methods#.U5iyjvldV8E
http://www.ldv.ei.tum.de/uploads/media/Vorlesung_3.4_Resampling.pdf
http://en.wikipedia.org/wiki/Lanczos_resampling
http://en.wikipedia.org/wiki/Digital_elevation_model
http://nsidc.org/data/nsidc-0082
http://ned.usgs.gov/
http://www2.jpl.nasa.gov/srtm/
http://www.hexagongeospatial.com/products/ERDAS-IMAGINE/details.aspx

